AssistMe is focused on potential operator and user experience of novel robotic assistance systems. A multi-level process develops and evaluates innovative interaction concepts and technologies in close collaboration with future operators and users who are integrated by user studies and who will evaluate the usability by means of application on use-cases from daily production routine.

AssistMe evaluates a combination of haptic (force feedback) technology, machine vision technology and spatial augmented reality interfaces.

The project results are integrated in two different use-cases from both combustion engine assembly and polishing of strand casting mold construction.

Project Name:
Human-Centered assistant robot in production

Funding:
FFG – 7. Ausschreibung Produktion der Zukunft nat. Projekte

Duration:  
01.04.2015 – 30.09.2017

Publications:

M. Ikeda, G. Ebenhofer, J. Minichberger, A. Pichler, A. Huber, A. Weiss, G. Fritz; User Centered Assistive Robotics for Production – Human Robot Interaction Concepts in the AssistMe project,  Proceedings of the OAGM&ARW Joint Workshop 2017
DOI: 10.3217/978-3-85125-524-9-09 Paper

Your Contact

Jürgen Minichberger
Research Engineer
Robotics and Assistive Systems

+43 72 52 885 304
juergen.minichberger@nullprofactor.at

We answer …

… your questions

Visual Computing combines established and scientific methods for position determination, tracking technologies and machine learning to drive the following innovations:

  • Systems with higher-value perception and assistance options
  • Smart devices and tools
  • Collaborating robots

Our current research focuses on spatial augmented reality for assembly assistance systems and a versatile perception system ‘AssemblyEye‘.

 

Our Competencies and Main Topics

We are a technology-enthusiastic team with competences in different fields (machine vision, parallel computing, deep neuronal networks, embedded systems, mechatronics, software engineering).

  • We offer solution competences with latest technologies and support our customers in the conception phase, in the proof-of-concept and in the product development of their innovations.
  • Our software extends existing (often imaging based) hardware components (e. g. 3D sensors, 2D sensors, inertial systems, tracking devices, wearables, …) and increases the potential and application possibilities of these basic technologies.
  • The resulting higher-value, partially disruptive technology is above the state of the art and lays the foundation for the innovations mentioned above.

It’s particularly important to us,

  • encapsulate the necessary complexity (such as the processing of sensor data, real-time capability through parallel data processing) in controllable modules and
  • to develop technology that is easy to use and integrate, and works in the real world so that new products can be created.

Visual computing developments are largely application independent. We are interested in applications arising from this. We are particularly pleased if our developments are not only used in a specific application context, but also in several application fields / domains to benefit our customers.

Projects

Automated visual quality inspection (AVQI) is essential for the production of high-quality goods. However, industrial companies often find that setting them up is time-consuming, error-prone and costly. They inevitably lead to unnecessary waste of resources and high energy consumption. The technical ...+
The international research project Teaming.ai with 15 partners, concerns the interaction of man and machine as a team. The goal is to achieve true teaming through a novel software framework. For example, AI systems can easily perform repetitive tasks with high accuracy, while humans find it easier t ...+
The aim of this international research project with six partners, is to create a high universal applicable construction site robot. Although the planned robot can be assembled from individual modules, it should be able to carry the heaviest loads. In addition to transporting components, it is also i ...+
Brain surgeries are very challenging and difficult interventions. They are only possible with the help of high technology and exceptional cognitive and motor skills of neurosurgeons. The project "Medical EDUcation in Surgical Aneurysm clipping (MEDUSA)" creates an innovative training and planning pl ...+

Finished Projects

The enormous increase in the number of variants and complexity in industrial products leads inevitably to a cost explosion at the industrial assembly process: Because of the high number of variants the assembly tasks have to be carried out manually. For example, for engine assembly it takes up to a ...+
The research project InstructMe deals with the issues of a highly raising variance and volatility in production and aims the reduction of planning and executing new production processes. Coincidentally also the operational knowledge of experienced workers and experts should be passed and conserved b ...+
An essential part of machine manufacturing is the interplay between construction and production. Often this connection leaks information in both ways: the construction team changes details in the last minute, while in production things are mounted in a different order or way as it was intended. With ...+
IMP explores new methods and tools for improving maintenance planning and execution in highly demanding and complex production systems by intuitively guiding, supervising and optimised scheduling. This includes the following priorities: (1) detection and classification of maintenance tasks from the ...+
Technologielabor für die humanzentrierte, assistive Produktion der Zukunft Ziel des Projekts ist der Aufbau eines vernetzten Technologie-Laboratoriums zur Entwicklung und Erprobung neuartiger, assistiver Technologien, Methoden und Konzepte für eine künftige digitale humanzentrierte Produktion. Ha ...+
Which production step is the individual employee currently in? How does he/she act at assembly stations and workbenches and with what strategy does he/she solve a task? What work routes does he/she have, how quickly does he/she walk, what ergonomic strain does he/she have? The more flexible and unpr ...+
Industrial Use Case – Location aware tablet   &   Medical Use Case – Projection based assistance Visual Augmented Reality Assistant for Spatial Mapping VizARd bridges the gap between the output of a digital planning step and the mapping onto real world objects. Static and/or mobile AR de ...+
Platform-based AI System for Human Motion Analysis to optimize Ergonomics of Hybrid Work Systems in Industry In the Hybrid Work Systems project, an extended, standardized and formal layer model of industrial processes is being developed, which can be used to describe joining processes, assistance st ...+

Publications

Stübl, Gernot, Christoph Heindl, Gerhard Ebenhofer, Harald Bauer, and Andreas Pichler (2023). “Lessons Learned from Human Pose Interaction in an Industrial Spatial Augmented Reality Application”. In: Procedia Computer Science 217, pp. 912–917.

Fritzsche, L, K Bengler, M Spitzhirn, HJ Wirsching, M Fleischer, M Benter, C Heindl, N Scheder, G Reisinger, F Strohmeier, et al. (2022). “ARBEITSWISSENSCHAFT”. In: Zeitschrift für Arbeitswissenschaft 76.4.

Spitzhirn, Michael, Martin Benter, Christoph Heindl, Noël Scheder, Gerhard Reisinger, Felix Strohmeier, and Wernher Behrendt (2022). “Hybrid work systems—platform-based work planning—designing productive and human-centered work processes”. In: Zeitschrift für Arbeitswissenschaft 76.4, pp. 489–509.

Stübl, Gernot, Gerhard Ebenhofer, Harald Bauer, and Andreas Pichler (2022). “Lessons learned from industrial augmented reality applications”. In: Procedia Computer Science 200, pp. 1218–1226.

Heindl, Christoph, Lukas Brunner, Sebastian Zambal, and Josef Scharinger (2021). “Blendtorch: A real-time, adaptive domain randomization library”. In: Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event, January 10–15, 2021, Proceedings, Part IV. Springer International Publishing, pp. 538–551.

Pönitz, Thomas, Gerhard Ebenhofer, Gernot Stübl, Christoph Heindl, and Josef Scharinger (2021). “On the potential of large-scale extended reality interaction for industrial environments”. In: Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers, pp. 61–63.

Schenkenfelder, Bernhard, Wolfgang Fenz, Stefan Thumfart, Gerhard Ebenhofer, Gernot Stübl, David B Lumenta, Gernot Reishofer, and Josef Scharinger (2021). “Elastic registration of abdominal mri scans and rgb-d images to improve surgical planning of breast reconstruction”. In: 2021 Annual Modeling and Simulation Conference (ANNSIM). IEEE, pp. 1–12.

Heindl, Christoph (2020a). “Graph Neural Networks for Node-Level Predictions”. In: arXiv preprint arXiv:2007.08649.

Heindl, Christoph, Markus Ikeda, Gernot Stübl, Andreas Pichler, and Josef Scharinger (2019a). “Enhanced Human-Machine Interaction by Combining Proximity Sensing with Global Perception”. In: arXiv preprint arXiv:1910.02445.

Heindl, Christoph, Markus Ikeda, Gernot Stübl, Andreas Pichler, and Josef Scharinger (2019b). “Metric pose estimation for human-machine interaction using monocular vision”. In: arXiv preprint arXiv:1910.03239.

Heindl, Christoph, Thomas Pönitz, Andreas Pichler, and Josef Scharinger (2019). “Large area 3D human pose detection via stereo reconstruction in panoramic cameras”. In: arXiv preprint arXiv:1907.00534.

Heindl, Christoph, Gernot Stübl, Thomas Pönitz, Andreas Pichler, and Josef Scharinger (2019). “Visual large-scale industrial interaction processing”. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 280–283.

Heindl, Christoph, Sebastian Zambal, Thomas Ponitz, Andreas Pichler, and Josef Scharinger (2019). “3d robot pose estimation from 2d images”. In: arXiv preprint arXiv:1902.04987.

Heindl, Christoph, Sebastian Zambal, and Josef Scharinger (2019). “Learning to predict robot keypoints using artificially generated images”. In: 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, pp. 1536–1539.

Pönitz, Thomas, Christoph Heindl, H Bauer, and Martin Kampel (2019). “Automatic intrinsics and extrinsics projector calibration with embedded light sensors”. In: Proceedings of the OAGM ARW Joint Workshop.

Strasser, Thomas, Martijn Rooker, Gerhard Ebenhofer, and Alois Zoitl (2019). “Standardized dynamic reconfiguration of control applications in industrial systems”. In: Rapid Automation: Concepts, Methodologies, Tools, and Applications. IGI Global, pp. 776–793.

Zambal, Sebastian, Christoph Heindl, and Christian Eitzinger (2019). “Probabilistic Modelling combined with a CNN for boundary detection of carbon fiber fabrics”. In: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). Vol. 1. IEEE, pp. 1621–1626.

Zambal, Sebastian, Christoph Heindl, Christian Eitzinger, and Josef Scharinger (2019). “End-to-end defect detection in automated fiber placement based on artificially generated data”. In: Fourteenth international conference on quality control by artificial vision. Vol. 11172. SPIE, pp. 371–378.

Heindl, Christoph, Thomas Pönitz, Gernot Stübl, Andreas Pichler, and Josef Scharinger (2018). “Spatio-thermal depth correction of RGB-D sensors based on Gaussian processes in real-time”. In: Tenth International Conference on Machine Vision (ICMV 2017). Vol. 10696. SPIE, pp. 333–340.

Ikeda, M., G. Ebenhofer, J. Minichberger, G. Stübl, A. Pichler, A. Huber, and A. Weiss (2018). “User Experience in kollaborativen Roboteranwendungen”. In: Proceedings of „Assistenztechnologien in der Arbeitswelt – uDay XVI.

Stübl, G., G. Ebenhofer, Harald Bauer, and Pichler Andreas (2018). “Projector-based non-planar Augmented Reality for assistance in an assembly process”. In: Proceedings of „Assistenztechnologien in der Arbeitswelt – uDay XVI;.

Plasch, Matthias, Gerhard Ebenhofer, Michael Hofmann, Martijn Rooker, Sharath Chandra Akkaladevi, and Andreas Pichler (2017). “Workspace Sharing Assembly Robots: Applying IEC 61499 to System Integration and Application Development”. In: Distributed Control Applications. CRC Press, pp. 397–422.

Stübl, G, C Heindl, H Bauer, and A Pichler (2017). “Deep Learning based Aesthetic Evaluation of State-Of-The-Art 3D Reconstruction Techniques”. In: accepted for the 8th 3DBody.Tech Conference & Expo.

Stübl, G, C Heindl, H Bauer, and A Pichler (2017). “On Quality Assurance of 3D Bust Reconstructions”. In: Proceedings of the 2nd OAGM-ARW Joint Workshop Vision, Automation and Robotics. In M. Vincze, B. Blaschitz, R. Huber-Moerk, M. Roth (editors).

Stübl, G., T. Pönitz, H. Bauer, and A. Pichler (2017). “Novel Human Machine Interaction with Sticky Notes for Industrial Production”. In: Proceedings of the 2nd OAGM-ARW Joint Workshop Vision, Automation and Robotics. In M. Vincze, B. Blaschitz, R. Huber-Moerk, M. Roth (editors).

Akkaladevi, Sharath, Martin Ankerl, Christoph Heindl, and Andreas Pichler (2016). “Tracking multiple rigid symmetric and non-symmetric objects in real-time using depth data”. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 5644–5649.

Heindl, Christoph, Sharath Chandra Akkaladevi, and Harald Bauer (2016a). “Capturing photorealistic and printable 3d models using low-cost hardware”. In: Advances in Visual Computing: 12th International Symposium, ISVC 2016, Las Vegas, NV, USA, December 12-14, 2016, Proceedings, Part I 12. Springer International Publishing, pp. 507–518.

Heindl, Christoph, Sharath Chandra Akkaladevi, and Harald Bauer (2016b). “Photorealistic texturing of human busts reconstruction”. In: Seventh International Conference on 3D Body Scanning Technologies, pp. 225–230.

Rooker, Martijn, Christian Wögerer, Alfred Angerer, Christoph Kopf, Jose Capco, Aitor Olarra, Elena Fuentes, Carola Zwicker, and Andreas Pichler (2016). “Flexible grasping of electronic consumer goods”. In: The International Journal of Advanced Manufacturing Technology 85, pp. 71–84.

Akkaladevi, Sharath Chandra and Christoph Heindl (2015). “Action recognition for human robot interaction in industrial applications”. In: 2015 IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS). IEEE, pp. 94–99.

Heindl, Christoph, Harald Bauer, Martin Ankerl, and Andreas Pichler (2015). “ReconstructMe SDK: a C API for Real-time 3D Scanning”. In: 6th International Conference and Exhibition on 3D Body Scanning Technologies, pp. 185–193.

Huber, Gerold, Markus Ikeda, Michael Hofmann, Christoph Heindl, and Andreas Pichler (2014). “Full Autonomous Quadcopter for Indoor 3D Reconstruction”. In: Conference: Austrian Robotics Workshop.

Kopf, Christoph, Christoph Heindl, Martin Ankerl, Harald Bauer, and Andreas Pichler (2014). “ReconstructMe-Towards a Full Autonomous Bust Generator”. In: Proc. of 5th Int. Conf. on 3D Body Scanning Technologies, pp. 184–190.

Plasch, Matthias, Michael Hofmann, Gerhard Ebenhofer, and Martijn Rooker (2014). “Reduction of development time by using scriptable IEC 61499 function blocks in a dynamically loadable type library”. In: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA). IEEE, pp. 1–8.

Rooker, Martijn, Michael Hofmann, Juergen Minichberger, Markus Ikeda, Gerhard Ebenhofer, Gerald Fritz, and Andreas Pichler (2014). “Flexible and assistive quality checks with industrial robots”. In: ISR/Robotik 2014; 41st International Symposium on Robotics. VDE, pp. 1–6.

Rooker, Martijn, Michael Hofmann, Jürgen Minichberger, Markus Ikeda, Gerhard Ebenhofer, Gerald Fritz, and Andreas Pichler (2014). “Quality inspection performed by a flexible robot system”. In: Proceedings of the Austrian Robotics Workshop. Vol. 22. 23.

Strasser, Thomas, Martijn Rooker, Gerhard Ebenhofer, and Alois Zoitl (2014). “Standardized dynamic reconfiguration of control applications in industrial systems”. In: International Journal of Applied Industrial Engineering (IJAIE) 2.1, pp. 57–73.

Zhou, Kai, Gerhard Ebenhofer, Christian Eitzinger, Uwe Zimmermann, Christoph Walter, José Saenz, Luis Pérez Castaño, Manuel Alejandro Fernández Hernández, and José Navarro Oriol (2014). “Mobile manipulator is coming to aerospace manufacturing industry”. In: 2014 IEEE international symposium on robotic and sensors environments (ROSE) proceedings. IEEE, pp. 94–99.

Ebenhofer, G, H Bauer, M Plasch, S Zambal, SC Akkaladevi, A Pichler, O Givehchi, H Trsek, J Jasperneite, S Patil, et al. (2013). “IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, ETFA”. In.

Ebenhofer, Gerhard, Harald Bauer, Matthias Plasch, Sebastian Zambal, Sharath Chandra Akkaladevi, and Andreas Pichler (2013). “A system integration approach for service-oriented robotics”. In: 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA). IEEE, pp. 1–8.

Kopf, Christoph, Christoph Heindl, Martijn Rooker, Harald Bauer, and Andreas Pichler (2013). “A portable, low-cost 3D body scanning system”. In: 3D Body Scanning Technologies, pp. 417–25.

Zoitl, Alois, Thomas Strasser, and Gerhard Ebenhofer (2013). “Developing modular reusable IEC 61499 control applications with 4DIAC”. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN). IEEE, pp. 358–363.

Heindl, C and C Kopf (2012). “ReconstructMe”. In: reconstructme. net.

Plasch, Matthias, Andreas Pichler, Harald Bauer, Martijn Rooker, and Gerhard Ebenhofer (2012). “A plug & produce approach to design robot assistants in a sustainable manufacturing environment”. In: 22nd International Conference on Flexible Automation and Intelligent Manufacturing (FAIM 2012), Helsinki, Finland.

Wögerer, Christian, Harald Bauer, Martijn Rooker, Gerhard Ebenhofer, Alberto Rovetta, Neil Robertson, and Andreas Pichler (2012). “LOCOBOT-low cost toolkit for building robot co-workers in assembly lines”. In: Intelligent Robotics and Applications: 5th International Conference, ICIRA 2012, Montreal, Canada, October 3-5, 2012, Proceedings, Part II 5. Springer Berlin Heidelberg, pp. 449–459.

Ebenhofer, Gerhard, Martijn Rooker, and Simon Falsig (2011). “Generic and reconfigurable IEC 61499 function blocks for advanced platform independent engineering”. In: 2011 9th IEEE International Conference on Industrial Informatics. IEEE, pp. 591–596.

Strasser, Thomas, Martijn Rooker, and Gerhard Ebenhofer (2011). “An IEC 61499 distributed control concept for reconfigurable robots”. In: International Journal of Computer Aided Engineering and Technology 3.3-4, pp. 344–359.

Schimmel, Andreas, Alois Zoitl, Roman Froschauer, Martijn Rooker, and Gerhard Ebenhofer (2010). “Model-driven communication routing in industrial automation and control systems”. In: 2010 8th IEEE International Conference on Industrial Informatics. IEEE, pp. 896–901.

Strasser, Thomas, Gerhard Ebenhofer, Martijn Rooker, and Ingo Hegny (2010). “Domain-specific design of industrial automation and control systems: The medeia approach”. In: IFAC Proceedings Volumes 43.4, pp. 18–23.

Strasser, Thomas, Alois Zoitl, and Gerhard Ebenhofer (2010). “4DIAC–Ein Open Source Framework für verteilte industrielle Automatisierungs-und Steuerungssysteme”. In: INFORMATIK 2010. Service Science–Neue Perspektiven für die Informatik. Band 1.

Wenger, Monika, Alois Zoitl, Roman Froschauer, Martijn Rooker, Gerhard Ebenhofer, and Thomas Strasser (2010). “Model-driven engineering of networked industrial automation systems”. In: 2010 8th IEEE International Conference on Industrial Informatics. IEEE, pp. 902–907.

Rooker, Martijn N, Gerhard Ebenhofer, and Thomas Strasser (2009). “Reconfigurable control in distributed automation systems”. In: 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots. IEEE, pp. 705–714.

Ferrarini, Luca, Carlo Veber, Gerhard Ebenhofer, Martijn Rooker, Thomas Strasser, Marco Colla, Ingo Hegny, Christoph Karl Sünder, and Monika Wenger (2008). “State-Of-The-Art And Technology Review Report”. In.

Rooker, Martijn N, Thomas Strasser, Gerhard Ebenhofer, Michael Hofmann, and Ricardo Velez Osuna (2008). “Modeling flexible mechatronical based assembly systems through simulation support”. In: 2008 IEEE International Conference on Emerging Technologies and Factory Automation. IEEE, pp. 452–455.

Strasser, T, MN Rooker, and G Ebenhofer (2008). “Distributed control concept for a 6-DOF reconfigurable robot arm”. In: Innovation production machines and systems: Fourth I* Proms Virtual International Conference.

Strasser, Thomas, Martijn Rooker, Gerhard Ebenhofer, Ingo Hegny, Monika Wenger, Christoph Sunder, Allan Martel, and Antonio Valentini (2008). “Multi-domain model-driven design of industrial automation and control systems”. In: 2008 IEEE International Conference on Emerging Technologies and Factory Automation. IEEE, pp. 1067–1071.

Strasser, Thomas, Martijn Rooker, Gerhard Ebenhofer, Alois Zoitl, Christoph Sunder, Antonio Valentini, and Allan Martel (2008a). “Framework for distributed industrial automation and control (4DIAC)”. In: 2008 6th IEEE international conference on industrial informatics. IEEE, pp. 283–288.

Strasser, Thomas, Martijn Rooker, Gerhard Ebenhofer, Alois Zoitl, Christoph Sunder, Antonio Valentini, and Allan Martel (2008b). “Structuring of large scale distributed control programs with IEC 61499 subapplications and a hierarchical plant structure model”. In: 2008 IEEE international conference on emerging technologies and factory automation. IEEE, pp. 934–941.

Sünder, Christoph Karl, Alois Zoitl, Oliver Hummer-Koppendorfer, Thomas Strasser, Gerhard Ebenhofer, Martijn Rooker, and Gerold Kerbleder (2008). “4DIAC-Framework for Distributed Industrial Automation Control”. In: 10. Fachtagung EKA 2008 Entwurf komplexer Automatisierungssysteme. Institut für Automation und Kommunikation, Magdeburg, pp. 163–174.

Pichler, A, H Bauer, C Eberst, C Heindl, and J Minichberger (2007). “Advanced 3D Imaging Technology for Autonomous Manufacturing Systems”. In: Mechatronics and Machine Vision in Practice. Springer Berlin Heidelberg Berlin, Heidelberg, pp. 87–97.

Pichler, Andreas, Harald Bauer, Christoph Heindl, Jürgen Minichberger, and Christof Eberst (2007). “Recognition and 6DOF localisation of parts for Lotsize1 automation”. In: IFAC Proceedings Volumes 40.3, pp. 265–270.

Rooker, Martijn N, Christoph Sünder, Thomas Strasser, Alois Zoitl, Oliver Hummer, and Gerhard Ebenhofer (2007). “Zero downtime reconfiguration of distributed automation systems: The εcedac approach”. In: Holonic and Multi-Agent Systems for Manufacturing: Third International Conference on Industrial Applications of Holonic and Multi-Agent Systems, HoloMAS 2007, Regensburg, Germany, September 3-5, 2007. Springer Berlin Heidelberg, pp. 326–337.

Hummer, Oliver, C Sunder, Alois Zoitl, Thomas Strasser, Martijn N Rooker, and Gerhard Ebenhofer (2006). “Towards zero-downtime evolution of distributed control applications via evolution control based on IEC 61499”. In: 2006 IEEE Conference on Emerging Technologies and Factory Automation. IEEE, pp. 1285–1292.

Pichler, A, H Bauer, C Eberst, C Heindl, and J Minichberger (2006). “Towards more agility in robot painting through 3d object recognition”. In: Intelligent production machines and systems. Elsevier Science Ltd, pp. 608–613.

Strasser, Thomas, Ingomar Müller, Mario Schüpany, Gerhard Ebenhofer, Roland Mungenast, C Sünder, Alois Zoitl, Oliver Hummer, Siegmar Thomas, and Heinrich Steininger (2006). “An advanced engineering environment for distributed & reconfigurable industrial automation & control systems based on IEC 61499”. In: Intelligent Production Machines and Systems. Elsevier Science Ltd, pp. 493–498.

Bauer, H (2001). “LACKIERTECHNIK-Der Lack ist ab-Induktive Ent-lackung mit dem Paint-Ex-Verfahren”. In: Metalloberflache-Beschichten von Metall und Kunststoff 55.2, pp. 36–36.

Your Contact

DI (FH) Harald Bauer
Head of Visual Computing

+43 7252 885 302
harald.bauer@nullprofactor.at

We answer…

… your questions

Technologies:

The ultimate goal of any kind of quality control is to avoid defective parts. Technologies related to achieving this goal are summarized under the strategic topic of “Zero Defect Manufacturing”.

PROFACTOR is developing methods that generate information in addition to results coming from quality control. These data enable the closing of the feedback loop from quality control to the production process, thus reducing or eliminating reject parts.

The first step to generating the necessary data is a suitable sensor technology. For metallic as well as (carbon fiber) composite parts specific sensor systems have been developed, e.g. for surface inspection based on photometric stereo combined with physical models of the surface’s reflectance properties. For detecting defects inside of parts active thermography has been developed for various kinds of materials.

The interpretation of the incoming data is either done through conventional, grey-level or texture-based segmentation algorithms or – more recently – through methods based on “deep learning” that are suitable for semantic segmentation. For the actual implementation in industrial environments the lack of training data is addressed by “generative adversarial networks” that can synthesize large quantities of image data from a smaller set of samples.

Data acquired during quality control are then combined with models of the production processes. These models enable the user to keep the production within tolerance limits by proposing specific adjustments of the parameters, especially when setting up a process for new product variant. For processes with high-value parts, where complex re-work processes may exist, decision support tools have been developed that combine quality data with logistical part flow simulations to optimize the performance of the whole production line.

The quality control systems for surface inspection are often realized in the form of inspection robots, especially when a full surface scan needs to be done for parts of complex shape. The necessary tools for coverage and motion planning, for defect detection, for backprojection of defects onto 3D CAD models have been developed for this purpose.

Projects

Currently, the use of bio-composites is limited to less critical applications that do not have significant requirements in terms of mechanical performance. However, the use of synthetic composites made from carbon or glass fibre has several difficulties in terms recycling and in terms of dependence ...+
The H2020 research project DrapeBot aims at the development of a human-robot collaborative draping process for carbon fiber composite parts. The robot will drape the large, less curved areas, while the human will drape the areas of high curvature that are difficult to reach. The transfer of large pa ...+
The project content of HyTechonomy is the research and development of hydrogen technologies comprising electrolyzers, storage systems and fuel cells for the energy, industry and the mobility sector in order to achieve a sustainable economy. The key topics of the project are:   Renewable Hydroge ...+
For complex thermo-dynamical processes such as curing of composite parts, heat treatment, coating, the current standard approach is to use experiments supported by simulation to find a suitable “recipe” for the process. This recipe is then applied in series production and very often the process ...+
A data-driven remanufacturing process for sheet metal and thermoplastic composites (COMPASS) The COMPASS project is driven by the needs to on the one hand increase the efficiency of recycling and remanufacturing processes (for sheet metal parts) and on the other hand by the need to find a solution f ...+

Finished Projects

The requirements for quality control, even for complex components, increase up to a 100% quality inspection. The inspection of parts of complex shape requires robotic solutions to move a sensor system in such a way that the whole surface of the part is covered. SPIRIT aims at the development of a s ...+
In order to remain competitive and retain its leading manufacturing position, European industry must be able to deliver high-quality products and increase productivity while keeping costs down. The manufacturing industry is undergoing a substantial transformation due to the proliferation of new digi ...+
Major parts - including the wings of the Airbus A 380 - are made of fiber-reinforced composites. During machining - e. g. drilling - the inhomogeneity of the material in the inner walls of the boreholes can lead to fraying and loosening. However, the quality of the boreholes is essential for the str ...+
The SonicScan project aims at developing NDT methods based on ultrasonic testing that are suitable for primary structural parts. The main challenge is the compact shape of the parts and their high thickness. To address this problem the project builds upon the sampling phased array technology that al ...+
The INLINE project aims at the solution of key challenges to enable the implementation of a scalable manufacturing process for fuel cell systems. Current manufacturing processes rely on manual work that has substantial limits in terms of cycle times, costs and scalability. Developments will start wi ...+
The factors of success in the context of the digital factory are the inclusion of human within the manufacturing process as well as the consideration of their individuality and experience. Assistive systems act an important role in this field. The challenges of a nearby collaboration of human and ro ...+
Die automatische Prüfung von Composite-Bauteilen gewinnt sowohl  in der Automobilindustrie als auch in der Luftfahrt zunehmend an Bedeutung. Während es bei den Produktionsverfahren substantielle Fortschritte gegeben hat, wird die Prüfung immer noch manuell durchgeführt, nimmt aber 30-50 Prozent ...+
Initial situation: Efficient production of carbon composite parts is an important topic for aerospace, automotive and other industries. In a draping process, carbon fibre textiles are shaped in order to produce parts with complex shape. This draping process results in complex deformation of carbon f ...+
Holzfurnieroberflächen spielen als Leichtbau-Dekorteile für die Luftfahrtindustrie eine wichtige Rolle. Diese Oberflächen sind hochglänzend lackiert, deren Qualität wird im Rahmen der Abnahme von den Erstausrüstern (OEM) kritisch bewertet. Dabei werden Messgeräte eingesetzt, die Kennwerte üb ...+
Non-destructive testing of components is an important auxiliary process step, not only in quality control but also in regular maintenance. The detection of cracks is currently done by using magnetic particle inspection, which is a decades-old, inefficient and ecologically undesirable process. There ...+
Machine vision in industrial quality control, e.g. in surface inspection, generates an enormous amount of data. These data are input for machine learning structures that reproduce human decision making. The setup and optimization of such machine learning structures in industrial environments require ...+

Publications

Alexander Walch, Christian Eitzinger, Werner Palfinger, Sebastian Beyer, Pauline Meyr-Heye; Reactive coverage planning for robotic NDT of complex parts; accepted for: European Conference on NDT 2018

Edwin Lughofer, Robert Pollak, Alexandru-Ciprian Zavoianu, Mahardhika Pratama, Pauline Meyer-Heye, Helmut Zörrer, Christian Eitzinger, Julia Haim, Thomas Radauer; Self-Adaptive Evolving Forecast Models with Incremental PLS Space Update for On-line Predicting Quality of Micro-fluidic Chips: Engineering Applications of Artificial Intelligence,Volume 68, February 2018, Pages 131–151, https://doi.org/10.1016/j.engappai.2017.11.001

Edwin Lughofer, Roland Richter, Ulrich Neissl, Wolfgang Heidl, Christian Eitzinger, Thomas Radauer; Explaining classifier decisions linguistically for stimulating and improving operators labeling behavior: Information Sciences, Volume 420, December 2017, Pages 16-36, https://doi.org/10.1016/j.ins.2017.08.012

Heidl, S. Thumfart, E. Lughofer, C. Eitzinger, E. P. Klement; Machine Learning Based Analysis of Gender Differences in Visual Inspection Decision Making, Information Sciences, Vol. 224, pages 62-76, DOI: 10.1016/j.ins.2012.09.054, Mar 2013

Dittrich, T. Riklin-Raviv, G. Kasprian, R. Donner, P.C.Brugger, D. Prayer, G. Langs; A Spatio-Temporal Latent Atlas for Semi-Supervised Learning of Fetal Brain Segmentations and Morphological Age Estimation, Accepted for publication in Medical Image Analysis, 2013

Elkharraz, S. Thumfart, D. Akay, C. Eitzinger, B. Henson; Tactile texture features corresponding to human affective responses. Submitted to IEEE Transactions on Affective Computing

Heidl, S. Thumfart, E. Lughofer, C. Eitzinger, E. P. Klement; Machine Learning Based Analysis of Gender Differences in Visual Inspection Decision Making,Information Sciences, accepted, pre-press DOI: 10.1016/j.ins.2012.09.054

Grünauer, S. Zambal, K. Bühler; „Detektion von Koronararterien: Das Beste aus zwei Welten“, Bildverarbeitung für die Medizin (BVM):pp. 269-273, 2011

van Beilen, H. B ult, R. Renken, M. Stieger, S. T humfart, F. Cornelissen, V. Kooijman; Effects of Visual Priming on Taste-Odor Interaction, PLoS ONE 6(9): e23857, 2011, doi:10.1371/journal.pone.0023857

Heidl, C. Eitzinger, M. Gyimesi, F. Breitenecker; Learning over Sets with Recurrent Neural Networks: An Empirical Categorization of Aggregation
Functions, Mathematics and Computers in Simulation 82(3), pp. 442-449, doi:10.1016/j.matcom.2010.10.018, Nov 2011

Thumfart, R. H.A.H. Jacobs, E. Lughofer, C. Eitzinger, F. W. Cornelissen, W. Groissboeck, R. Richter, “Modeling human aesthetic perception of visual textures “, ACM Transactions on Applied Perception, Volume 8, Issue 5, Nov. 2011, doi:10.1145/2043603.2043609

Heidl, C. Eitzinger, M. Gyimesi, F. Breitenecker; Learning over Sets with Recurrent Neural Networks: An Empirical Categorization of Aggregation Functions, Mathematics and Computers in Simulation, ISSN 0378-4754, 2010

Groissboeck, E. Lughofer, S. Thumfart; Associating Visual Textures with Human Perceptions using Genetic Algorithms, Information Sciences, vol. 180, issue 11, pp. 2065-2084, doi:10.1016/j.ins.2010.01.035, 2010

H.A.H. Jacobs, R. Renken, S. Thumfart, F. W. Cornelissen; Different Judgments about Visual Textures Invoke Different Eye Movement Patterns, Journal of Eye Movement Research, 3(4):2, pp. 1-13, 2010

Edwin Lughofer, Robert Pollak, Alexandru-Ciprian Zavoianu, Mahardhika Pratama, Pauline Meyer-Heye, Helmut Zörrer, Christian Eitzinger, Julia Haim, Thomas Radauer; Self-Adaptive Evolving Forecast Models with Incremental PLS Space Update for On-line Predicting Quality of Micro-fluidic Chips, Engineering Applications of Artificial Intelligence,Volume 68, February 2018, Pages 131–151, https://doi.org/10.1016/j.engappai.2017.11.001

Edwin Lughofer, Roland Richter, Ulrich Neissl, Wolfgang Heidl, Christian Eitzinger, Thomas Radauer; Explaining classifier decisions linguistically for stimulating and improving operators labeling behavior, Information Sciences, Volume 420, December 2017, Pages 16-36, https://doi.org/10.1016/j.ins.2017.08.012

Alexandru-Ciprian Zavoianu, Edwin Lughofer, Robert Pollak, Pauline Meyer-Heye, Christian Eitzinger, Thomas Radauer; Multi-Objective Knowledge-Based Strategy for Process Parameter Optimization in Micro-Fluidic Chip Production, 2017 IEEE Symposium Series on Computational Intelligence, accepted

Tran, C. Eitzinger; ThermoBot – autonomous robotic system for thermographic detection of cracks. Workshop Proceedings of IAS-13, 13th Intl.Conf.on Intelligent Autonomous Systems, Padova (Italy) July 15-19,2014, ISBN 978-88-95872-06-3, pp.391-391

Eitzinger, S. Akkaladevi; Dexterous Assembler Robot Working with Embodied Intelligence, Workshop Proceedings of IAS-13, 13th Intl.Conf.on Intelligent Autonomous Systems, Padova (Italy) July 15-19,2014, ISBN 978-88-95872-06-3, pp.393-393

Eitzinger, K. Zhou; VALERI – Validation of Advanced, Collaborative Robotics for Industrial Applications. Workshop Proceedings of IAS-13, 13th Intl.Conf.on Intelligent Autonomous Systems, Padova (Italy) July 15-19,2014, ISBN 978-88-95872-06-3, pp.392-392

Eitzinger, A. Baghbanpourasl, S. Zambal; Image Processing Issues in Scanning Inspection Robots. Workshop Proceedings of IAS-13, 13th Intl.Conf.on Intelligent Autonomous Systems, Padova (Italy) July 15-19,2014, ISBN 978-88-95872-06-3, pp.394-402

Traxler, P. Thanner, G. Mahler; Temporal analysis for implicit compensation of local variations of emission coefficient applied for laser induced crack checking, 12th International Conference on Quantitative Infrared Thermography, Bordeaux, France, 7th-11th July 2014

Dittrich, T. Riklin-Raviv, G. Kasprian, R. Donner, P.C.Brugger, D. Prayer, G. Langs. A Spatio; Temporal Latent Atlas for Semi-Supervised Learning of Fetal Brain Segmentations and Morphological Age Estimation, Medical Image Analysis, Vol. 18(1), pp. 9-21, January 2014.

Alexander Walch, Christian Eitzinger; A combined calibration of 2D and 3D sensors, Proceedings of the VISAPP. 9th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Lisbon, Portugal, 5th-8th Jan. 2014

Traxler, P. Thanner, P. Meyer Heyer; Design of and practical experience with a thermographic crack checking system using laser heating, 11th European conference on NDT, 2014 10 09 Prag, ISBN: 978-80-214-5018-9 by Brno University of Technology, http://www.ndt.net/events/ECNDT2014/app/content/Paper/166_Traxler.pdf

Traxler; Unterdrückung des Emissionsgradeinflusses in der Laser angeregten Rissprüfung, Tagungsband der ÖGfTh (Österreichische Gesellschaft für Thermografie), 26.9.2014 Eugendorf/Austria

Walch, C. Eitzinger. A combined calibration of 2D and 3D sensors, Proceedings of the VISAPP. 9th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Lisbon, Portugal, 5th-8th Jan. 2014

Heidl, S. Thumfart, and C. Eitzinger, Humans Differ; So Should Models. Systematic Differences Call for Per-Subject Modeling, ICAART 2012: Proceedings of the 4th Int. Conf. on Agents and Artificial Intelligence, pages 413-418, Vilamoura, Portugal, February 6th-8th, 2012

Heidl, S. Thumfart, E. Lughofer, C. Eitzinger, E. P. Klement; Classifier-based analysis of visual inspection: Gender differences in decision-making, Proc. of SMC 2010, IEEE Conference on Systems, Man and Cybernetics, pp. 113-120, Istanbul, Turkey, October 2010

Thumfart, J. Scharinger, C. Eitzinger; Pixel based Texture Mixing, Proc. of the 34th Workshop of the Austrian Association for Pattern Recognition, pp. 147-154, Zwettl, Austria, May 27-28th 2010

Henson, G. Elkharraz, S. Thumfart, D. Akay, C. Eitzinger; Machine vision approach to predicting affective properties of tactile textures, In Proceedings of the International Conference on Kansei Engineering and Emotion Research, KEER 2010, Paris, France, March 2- 4, ISBN 978-4-9905104-0-4, pp. 2261 – 2270, 2010.

Thumfart, W. Palfinger, M Stöger, C. Eitzinger; Accurate Fibre Orientation Measurement for Carbon Fibre Surfaces, accepted for presentation at CAIP 2013, York, UK, Aug 27-29th, 2013

Eitzinger, S.Ghidoni, E. Menegatti; ThermoBot: towards semi-autonomous, thermographic detection of crack, Proc. of the International Conference on Heating by Electromagnetic Source HES-13, pp. 461-468, Padua, May 21-24, 2013

Eitzinger, PROFACTOR, Steyr-Gleink, Österreich, G. Mahler, InfraTec, Dresden; Konzeption und Aufbau einer robotergestützten Plattform für optisch angeregte Wärmefluss-Thermografie. Presented at DGZFP, Thermographie-Kolloquium 2013, 26. – 27. September 2013, Leinfelden-Echterdingen

Traxler, PROFACTOR, Steyr-Gleink, Österreich, S. Koch, Institut Dr. Foerster, Reutlingen; Inline-Prüfung von warmgewalzten Stahlknüppeln mittels Wärmeflussthermographie, Presented at DGZFP, Thermographie-Kolloquium 2013, 26. – 27. September 2013, Leinfelden-Echterdingen

Thanner, G. Traxler, Design for Thermographic Crack Checking System using Laser Induced Heat Flux Technology, Presented at Factory Automation Conference 2012, Veszprem, Hungary, 21-22 May 2012 Proceedings of Factory Automation 2012, pages 122-125, Veszprem, Hungary

Thumfart, W. Palfinger, C. Eitzinger; Vision based sensors enabling automated production of composite material. In the Proc. of SAMPE / SEMAT 2012, Munich, May 24th – 25th, pp. 301 – 306, ISBN: 978-3-952 3565-6-2, 2012

Eitzinger, S. Thumfart: Optimizing Feature Calculation in Adaptive Machine Vision Systems, M. Sayed-Mouchaweh and E. Lughofer (eds.), Learning in Non-Stationary Environments: Methods and Applications, DOI 10.1007/978-1-4419-8020-5_13, Springer Science+Business Media New York 2012

S.Thumfart, PhD Thesis: Genetic Texture Synthesis. Johannes Kepler University Linz, Department of Computational Perception, Feb 2012

Dittrich; Ein Atlas der frühen Gehirnentwicklung. Published online at ORF Science, July 2013

Thanner: “Defect Avoidance, Machine-vision system catches defects in seamless steel tube production using linescan cameras and nearinfrared imaging“, Vision Systems Design (VSD) Magazin, 1.6. 2010

Wögerer, P. Thanner, G. Traxler: “Measurement of Material properties with Thermography“, FACTORY AUTOMATION 2011 Conference, Györ, Hungary, 24-26 May 2011

Wögerer, P. Thanner, G. Traxler: „Thermografic methods for online control for steel pipes“, FACTORY AUTOMATION 2011 Conference, Györ, Hungary, 24-26 May 2011

Petra Thanner „Mülltrennung mit Infrarottechnologie“, Newsletter E!AT aktuell, März 2010

Thumfart; “Pixel based Texture Mixing“, ÖAGM 2010 – 34th annual workshop of the Austrian Association for Pattern Recognition (AAPR) – Computer Vision in a Global Society, Zwettl, 28. Mai 2010

Thanner, W. Palfinger, “Qualitätssicherung von Carbonfaserteilen mit Bildverarbeitung
Handhabungstechnik – Der Schlüssel für eine automatisierte Herstellung von Composite-Bauteilen, Augsburg, 8. Juli 2010

Thanner, W. Palfinger, G. Traxler, “Wärmeflussauswertung für die induktiv angeregte Rissprüfung“, Thermografieforum Eugendorf, Eugendorf, 10. September 2010

Eitzinger; “Adaptive Produktion“, 25 Jahre Eureka, Linz, 7. Oktober 2010

Thanner; “EM80 – OIDIPUS, Optimized InGaAS Detectors for Imaging Applications and Industrial Spectroscopy“, 25 Jahre Eureka, Linz, 7. Oktober 2010

Heidl; “Classifier – based analysis of visual inspection: Gender differences in decision-making“, SMC2010, IEEE International Conference on Systems, Man and Cybernetics, Istanbul, 11. Oktober 2010

Thanner, G. Traxler; “Advanced Evaluation for Thermographic Crack Detection with Inductive Excitation for Steele Billets“, 20th Manufuturing Confernece, Budapest, 20. Oktober 2010

Traxler; „Automatisierte Inline-Prüfmöglichkeit mit aktiver Thermographie“, Seminar Wärmefluss-Thermographie, Erlangen, 4. November 2010

Petra Thanner; Defect Avoidance, Machine-vision system catches defects in seamless steel tube production using linescan cameras and near-infrared imaging,Vision Systems Design (VSD) Magazi, 1.6. 2010

Thanner, G. Traxler; Qualitätssicherung von Carbonfaserteilen mittels Bildverarbeitung, 8. Juli 2010, Handhabungstechnik – Der Schlüssel für eine automatisierte Herstellung von Composite-Bauteilen, Augsburg, Germany

Your Contact

Dr. Christian Eitzinger
Head of Machine Vision

+43 7252 885 250
christian.eitzinger@nullprofactor.at

We answer…

… your Questions

The present generation of robots are based on systems that are equipped with standard products for intelligent sensor systems. These machines are usually embedded in a rigid control unit and have little cognitive abilities. PROFACTOR’s research focuses on innovative technology solutions and systems whose autonomous decision-making power is characterized by increasing complexity.

The goal is to enable machines and systems to adapt their assistance as autonomously as possible, according to the situation and in real time. The acceptance of such solutions by the human operator is also taken into account – regardless of the obligatory safety issues.

PROFACTOR’s current research focuses on the following topics:

  • Cooperative Robotics: The focus is on interaction between human and the robot sharing the same workspace and carrying out their work on the same object simultaneously.
  • Situated Assistance: The goal is efficient and robust recognition of user behavior in real-time. Instead of considering the user as an obstacle, the user behavior is classified and necessary assistance is offered in real time.
  • Decentralized and distributed system architectures: Simplifying the programming effort of the system with heterogeneous elements such as sensors, robots and control.
  • Automatic Process Planning: Enabling (semi-) automatic planning of the handling and inspection processes, automatic planning of robotic processes and optimization of adaptively generated process plans.
  • New Action Patterns and Modalities: The focus is on the patterns and modalities of human-robot cooperation – taking the user acceptance into account.

Projects

BatteryLife - Extensive research into extending battery life cycles through secondary use. The high acquisition costs for lithium-ion batteries (LIBs) are considered one of the biggest obstacles to the introduction of electric vehicles on the mass market. Aged traction batteries sometimes no longer ...+
FlExible assembLy manufacturIng with human-robot Collaboration and digital twin modEls (FELICE)   FELICE addresses one of the greatest challenges in robotics, i.e. that of coordinated interaction and combination of human and robot skills. The proposal targets the application priority area of ...+
SMART CIRCUIT: enabling SMARTer, CIRCUlar digITal innovation hubs to enhance Central Europe’s manufacturing eco-system towards a greener & more competitive future. The growth of manufacturing in Central Europe (CE) is characterized by high resource consumption, waste and emissions, especially ...+

Publications

Zörrer, H., Weichhart, G., Schmoigl Tonis, M., Bieg, T., Propst, M., Schuster, D., Sturm, N., Nativel, C., Salomon, G., Strohmeier, F., Sackl, A., Eberle, M., & Pichler, A. (2023). Enabling End-Users in Designing and Executing of Complex, Collaborative Robotic Processes. Applied System Innovation, 6(3), 56. https://doi.org/10.3390/asi6030056

Deshpande, K., Möhl, P., Hämmerle, A., Weichhart, G., Zörrer, H., & Pichler, A. (2022). Energy Management Simulation with Multi-Agent Reinforcement Learning: An Approach to Achieve Reliability and Resilience. Energies, 15(19). https://doi.org/10.3390/en15197381

Haemmerle, A., Deshpande, K., Moehl, P., & Weichhart, G. (2022). Training an Energy Management Simulation with Multi-Agent Reinforcement Learning. Researchgate.Net, May. https://www.researchgate.net/profile/Kapil-Deshpande-5/publication/360912718_Training_an_Energy_Management_Simulation_with_Multi-Agent_Reinforcement_Learning/links/62920b1455273755ebbda8af/Training-an-Energy-Management-Simulation-with-Multi-Agent-Reinforc

Pratheepkumar, A., Hofmann, M., Ikeda, M., & Pichler, A. (2022). Domain Adaptation With Evolved Target Objects for AI Driven Grasping. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, 2022-Septe. https://doi.org/10.1109/ETFA52439.2022.9921470

Zörrer, H., Propst, M., Weichhart, G., Pichler, A., Strohmeier, F., & Schmoigl-Tonis, M. (2022). ROBxTASK RTE – a lightweight runtime environment to implement collaborative processes across different robotic systems. IFAC-PapersOnLine, 55(10), 2647–2652. https://doi.org/10.1016/j.ifacol.2022.10.109

Akkaladevi, S. C., Plasch, M., Hofmann, M., & Pichler, A. (2021). Semantic knowledge based reasoning framework for human robot collaboration. Procedia CIRP, 97, 373–378. https://doi.org/10.1016/j.procir.2020.05.253

Ikeda, M., Chitturi, N., Ganglbauer, M., & Pichler, A. (2021). ScienceDirect Knowledge Based Accuracy Improvement in Programming by Demonstration of Point Based Processes. 00(2019).

Ikeda, M., Ganglbauer, M., Chitturi, N., & Pichler, A. (2021). ScienceDirect Geometric Reasoning enabled One Shot Learning for Robotic Tasks. 00(2019).

Plasch, M., Akkaladevi, S. C., Hofmann, M., Wögerer, C., & Pichler, A. (2021). Event-driven knowledge engineering as enabling technology towards configuration of assistance systems in industrial assembly. Smart Innovation, Systems and Technologies, 200, 261–272. https://doi.org/10.1007/978-981-15-8131-1_24

Viktor, A., Ikeda, M., & Pichler, A. (2021). ScienceDirect Panorama Image Based Code Free Programming of Line Based Robotic Operations. 00(2019).

Weichhart, G., Mangler, J., Raschendorfer, A., Mayr-Dorn, C., Huemer, C., Hämmerle, A., & Pichler, A. (2021). An adaptive system-of-systems approach for resilient manufacturing. Elektrotechnik Und Informationstechnik, 138(6), 341–348. https://doi.org/10.1007/s00502-021-00912-2

Weichhart, G., Pichler, A., Strohmeier, F., Schmoigl, M., & Zorrer, H. (2021). The ROBxTASK architecture for interoperability of robotic systems. 2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 – Proceedings, 449–453. https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488560

AKKALADEVI, Sharath Chandra, et al. Semantic knowledge based reasoning framework for human robot collaboration. Procedia CIRP, 2021, 97. Jg., S. 373-378.

Chandra, S., Plasch, M., Hofmann, M., & Pichler, A. (2020). ScienceDirect Semantic Knowledge Based Reasoning Framework for Human Robot Collaboration. 00(2019), 1–6.

Spitzer, F., Lindorfer, R., Froschauer, R., Hofmann, M., & Ikeda, M. (2020). A generic Approach for the Industrial Application of Skill-based Engineering using OPC UA. Proceedings of the IEEE International Conference on Emerging Technologies And Factory Automation (ETFA), 8.

Weichhart, G., Ikeda, M., & Propst, M. (2020). PlugBot Architecture for Modular Manufacturing Enterprise Interoperability may be seen as one end of a continuum ranging from tight integration of.

Akkaladevi, S. C., Plasch, M., Pichler, A., & Ikeda, M. (2019). Towards reinforcement based learning of an assembly process for human robot collaboration. Procedia Manufacturing, 38(Faim 2019), 1491–1498. https://doi.org/10.1016/j.promfg.2020.01.138

Heindl, C., Ikeda, M., Stübl, G., Pichler, A., & Scharinger, J. (2019). Enhanced Human-Machine Interaction by Combining Proximity Sensing with Global Perception. 2020. http://arxiv.org/abs/1910.02445

Heindl, C., Ikeda, M., Stübl, G., Pichler, A., & Scharinger, J. (2019). Metric Pose Estimation for Human-Machine Interaction Using Monocular Vision. 1. http://arxiv.org/abs/1910.03239

Akkaladevi, S. C., Plasch, M., Eitzinger, C., Pichler, A., & Rinner, B. (2018). Towards a Context Enhanced Framework for Multi Object Tracking in Human Robot Collaboration. IEEE International Conference on Intelligent Robots and Systems, 8435–8442. https://doi.org/10.1109/IROS.2018.8593842

Akkaladevi, S. C., Plasch, M., Maddukuri, S., Eitzinger, C., Pichler, A., & Rinner, B. (2018). Toward an interactive reinforcement based learning framework for human robot collaborative assembly processes. Frontiers Robotics AI, 5(NOV), 1–15. https://doi.org/10.3389/frobt.2018.00126

Fast-Berglund, A., Thorvald, P., Billing, E., Palmquist, A., Romero, D., & Weichhart, G. (2018). Conceptualizing Embodied Automation to Increase Transfer of Tacit knowledge in the Learning Factory. 9th International Conference on Intelligent Systems 2018: Theory, Research and Innovation in Applications, IS 2018 – Proceedings, 358–364. https://doi.org/10.1109/IS.2018.8710482

Weichhart, G., Fast-Berglund, A., Romero, D., & Pichler, A. (2018). An Agent- and Role-based Planning Approach for Flexible Automation of Advanced Production Systems. 9th International Conference on Intelligent Systems 2018: Theory, Research and Innovation in Applications, IS 2018 – Proceedings, 391–399. https://doi.org/10.1109/IS.2018.8710546

Wögerer, C., Mühlberger, M., Ikeda, M., Kastner, J., & Chitturi, N. C. (2018). Inkjet Printings on FFF printed curved surfaces. Fraunhofer Direct Digital Manufacturing Conference, March, 2–5.

Hämmerle, A., & Weichhart, G. (2017). Variable neighbourhood search solving sub-problems of a lagrangian flexible scheduling problem. ICORES 2017 – Proceedings of the 6th International Conference on Operations Research and Enterprise Systems, 2017-Janua, 234–241. https://doi.org/10.5220/0006114102340241

Weichhart, G., & Hämmerle, A. (2017). Lagrangian relaxation realised in the NgMPPS multi actor architecture. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10413 LNAI, 138–155. https://doi.org/10.1007/978-3-319-64798-2_9

Akkaladevi, S. C., Ankerl, M., Fritz, G., & Pichler, A. (2016). Real-time tracking of rigid objects using depth data. Computer Vision and Robotics.

Akkaladevi, S., Ankerl, M., Heindl, C., & Pichler, A. (2016). Tracking multiple rigid symmetric and non-symmetric objects in real-time using depth data. Proceedings – IEEE International Conference on Robotics and Automation, 2016-June, 5644–5649. https://doi.org/10.1109/ICRA.2016.7487784

Maddukuri, S. C., Heidl, W., Eitzinger, C., & Pichler, A. (2016). Structural Synthesis based on PCA: Methodology and Evaluation. 348–355. https://doi.org/10.5220/0005721403480355

Plasch, M., Ebenhofer, G., Hofmann, M., Rooker, M., Akkaladevi, S., & Pichler, A. (2016). Workspace Sharing Assembly Robots: Applying IEC 61499 to System Integration and Application Development. 397–422. https://doi.org/10.1201/b19391-23

Weichhart, G., & Hämmerle, A. (2016). Multi-actor architecture for schedule optimisation based on lagrangian relaxation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9872 LNAI, 190–197. https://doi.org/10.1007/978-3-319-45889-2_14

Wögerer, C., Mühlberger, M., & Ikeda, M. (2016). ADDMANU – An Austrian Lighthouse Project for Additive Manfacturing. c, 35–40.

Akkaladevi, S., & Eitzinger, C. (2015). Performance Evaluation of a Cognitive Robotic System. Austrian Robotic Workshop, Klagenfurt, Austria, 43(0), 7–9.

Akkaladevi, S., Heindl, C., Angerer, A., & Minichberger, J. (2015). Action Recognition for Industrial Applications using Depth Sensors Action Recognition for Industrial Applications using Depth Sensors. 43(November), 1–4.

Zhou, K., Rooker, M., Akkaladevi, S. C., Fritz, G., & Pichler, A. (2015). How industrial robots benefit from affordances. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8926, 455–458. https://doi.org/10.1007/978-3-319-16181-5_35

Plasch, M., Hofmann, M., Ebenhofer, G., & Rooker, M. (2014). Reduction of development time by using scriptable IEC 61499 function blocks in a dynamically loadable type library. 19th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2014. https://doi.org/10.1109/ETFA.2014.7005164

Rooker, M., Hofmann, M., Minichberger, J., Ikeda, M., Ebenhofer, G., & Pichler, A. (2014). Quality Inspection performed by a Flexible Robot System. 47–51.

Rooker, M., Hofmann, M., Minichberger, J., Ikeda, M., Ebenhofer, G., Fritz, G., & Pichler, A. (2014). Flexible and assistive quality checks with industrial robots. Proceedings for the Joint Conference of ISR 2014 – 45th International Symposium on Robotics and Robotik 2014 – 8th German Conference on Robotics, ISR/ROBOTIK 2014, 184–189.

Akkaladevi, S. C., & Eitzinger, C. (2013). DARWIN – D extrous A ssembler R obot W orking with embodied INtelligence ). 43(0), 7252.

Capco, J., Rooker, M., & Pichler, A. (2013). RRT planner for the binpicking problem. 9th International Workshop on Robot Motion and Control, RoMoCo 2013 – Workshop Proceedings, 1, 154–160. https://doi.org/10.1109/RoMoCo.2013.6614601

Hämmerle, A., & Ankerl, M. (2013). Solving a vehicle routing problem with ant colony optimisation and stochastic ranking. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8111 LNCS(PART 1), 259–266. https://doi.org/10.1007/978-3-642-53856-8-33

Plasch, M., Ebenhofer, G., Hofmann, M., Bauer, H., Wögerer, C., Rooker, M., & Pichler, A. (2013). Ein modulares Roboterassistenzsystem zur Effizienzsteigerung in der Produktion. Internationales Forum Meachtronik.

Rooker, M., Angerer, A., Wallhoff, F., Blume, J., Bannatt, A., Ferrara, P., Olarra, A., Kiirikki, J., & Pichler, A. (2013). Flexible Assistance System for Packaging Electronic Consumer Goods using Industrial Robots *.

Plasch, M., Pichler, A., & Bauer, H. (2012). A Plug & Produce Approach to Design Robot Assistants in a Sustainable Manufacturing Environment. 22nd International Conference on Flexible Automation and Intelligent Manufacturing (FAIM 2012), 43(0), 8. http://www.locobot.eu/wp-content/uploads/2011/02/A-Plug-Produce-Approach-to-Design-Robot-Assistants-in-a-Sustainable-Manufacturing-Environment_FAIM2012.pdf

Wögerer, C., Bauer, H., Rooker, M., Ebenhofer, G., Rovetta, A., Robertson, N., & Pichler, A. (2012). LOCOBOT – Low cost toolkit for building robot co-workers in assembly lines. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7507 LNAI(PART 2), 449–459. https://doi.org/10.1007/978-3-642-33515-0_45

Ankerl, M., & Hämmerle, A. (2009). Applying Ant colony optimisation to dynamic pickup and delivery. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5717 LNCS, 721–728. https://doi.org/10.1007/978-3-642-04772-5_93

Pichler, A., Ikeda, M., & Stübl, G. (2009). Ein lernfähiger adaptiver Roboter für Handhabung komplexer hochvarianter Teile. Internationales Forum Meachtronik.

Rooker, M. N., Ebenhofer, G., & Strasser, T. (2009). Reconfigurable control in distributed automation systems. Proceedings of the 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, ReMAR 2009, 705–714.

Rooker, M. N., Strasser, T., Ebenhofer, G., Hofmarm, M., & Osuna, R. V. (2008). Modeling flexible mechatronical based assembly systems through simulation support. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, 452–455. https://doi.org/10.1109/ETFA.2008.4638434

Strasser, T., Rooker, M. N., & Ebenhofer, G. (2008). Distributed Control Concept for a 6-DOF Reconfigurable Robot Arm. Control.

Hämmerle, A., Karageorgos, A., Pirker, M., Reitbauer, A., & Weichhart, G. (2004). A role-based infrastructure for customised agent system development in supply networks. Conference Proceedings – IEEE International Conference on Systems, Man and Cybernetics, 5, 4692–4699. https://doi.org/10.1109/ICSMC.2004.1401272

Stalker, I. D., Mehandjiev, N. D., Weichhart, G., & Fessl, K. (2004). Agents for Decentralised Process Design. Proceedings of the 12th International Conference on Cooperative Information Systems, 23–25.

Hämmerle, A., Karageorgos, A., Mehandjiev, N., & Weichhart, G. (2003). A GENTCITIES TECHNICAL NOTE Integrated Logisitcs and Prodction Planning. Agentcities Technote Series, 1–15.

Hämmerle, A., Weichhart, G., & Fessl, K. (2002). The MaBE project: An agent-based environment for business networks. Proceedings – International Workshop on Database and Expert Systems Applications, DEXA, 2002-Janua, 646–650. https://doi.org/10.1109/DEXA.2002.1045971

Hämmerle, A., Schleicher, M., Kollingbaum, M., & Lane, M. (1999). Skilled Resources in Holonic Manufacturing Systems.

Hämmerle, A., Dupré, C., & Hingerl, K. (1997). Distributed Knowledge and an Approach To Path-Planning. 8th DAAAM INTERNATIONAL SYMPOSIUM, October.

Akkaladevi, S., Ebenhofer, G., & Matthias, P. (n.d.). Benchmarking a Cognitive System. 4321–4323.

Hofmann, M., Ikeda, M., Minichberger, J., Fritz, G., & Pichler, A. (n.d.). Automatic Coverage Planning System for Quality Inspection of Complex Objects *. 3–4.

Hofmann, M., Propst, M., Ikeda, M., Pichler, A., Spitzer, F., & Froschauer, R. (2023). Framework for Reducing the Complexity of Programming Robot Skills. Lecture Notes in Mechanical Engineering, 592–604. https://doi.org/10.1007/978-3-031-17629-6_62

Sackl, A., Pretolesi, D., Burger, S., Ganglbauer, M., & Tscheligi, M. (2022). Social Robots as Coaches: How Human-Robot Interaction Positively Impacts Motivation in Sports Training Sessions. RO-MAN 2022 – 31st IEEE International Conference on Robot and Human Interactive Communication: Social, Asocial, and Antisocial Robots, 141–148. https://doi.org/10.1109/RO-MAN53752.2022.9900600

Akkaladevi, S. C., Plasch, M., Chitturi, N. C., Hofmann, M., & Pichler, A. (2020). Programming by interactive demonstration for a human robot collaborative assembly. Procedia Manufacturing, 51(2019), 148–155. https://doi.org/10.1016/j.promfg.2020.10.022

Chandra, S., Plasch, M., Chowdhary, N., & Pichler, A. (2020). ScienceDirect Programming by Interactive Demonstration for a Human Robot Collaborative Assembly. 00(2019), 1–8.

Chitturi, N. C., Kulha, P., Plasch, M., Ganglbauer, M., Weinbacher, A., & Pichler, A. (2020). Intuitive Human-Robot Interaction with Inkjet Printed Capacitive Sensors. March, 1–6.

Ganglbauer, M., Plasch, M., Ikeda, M., & Pichler, A. (2020). ScienceDirect Human in the loop online estimation of robotic speed limits for safe human robot collaboration. 00(2019), 0–6.

AKKALADEVI, Sharath Chandra, et al. Programming-free approaches for human–robot collaboration in assembly tasks. In: Advanced Human-Robot Collaboration in Manufacturing. Cham: Springer International Publishing, 2021. S. 283-317.

HOFMANN, Michael, et al. Towards Human and Robot Collaborative Ergonomic Handling of Long Parts with a Loose Grip. In: Smart Technologies for Precision Assembly: 9th IFIP WG 5.5 International Precision Assembly Seminar, IPAS 2020, Virtual Event, December 14–15, 2020, Revised Selected Papers 9. Springer International Publishing, 2021. S. 249-259.

PROPST, Matthias, et al. Human and Workcell Event Recognition and Its Application Areas in Industrial Assembly. In: Smart Technologies for Precision Assembly: 9th IFIP WG 5.5 International Precision Assembly Seminar, IPAS 2020, Virtual Event, December 14–15, 2020, Revised Selected Papers 9. Springer International Publishing, 2021. S. 260-275.

Akkaladevi, S. C., Pichler, A., Plasch, M., Ikeda, M., & Hofmann, M. (2019). Skill-based programming of complex robotic assembly tasks for industrial application. Elektrotechnik Und Informationstechnik, 136(7), 326–333. https://doi.org/10.1007/s00502-019-00741-4

Chitturi, N. C., Ganglbauer, M., Plasch, M., Kulha, P., & Pichler, A. (2019). HolisafeHRC: Holistic Safety Concepts ni Human-Robot Collaboration. Systems Biology, 71–75. https://doi.org/10.3217/978-3-85125-663-5-11

Ikeda, M., Ganglbauer, M., Ashok, P., Maddukuri, S., Hofmann, M., & Pichler, A. (2019). Instrumented Tool based Robot Programming – Parameterization of Screwing Process Macros. Procedia Manufacturing, 38(2019), 415–422. https://doi.org/10.1016/j.promfg.2020.01.053

Weichhart, G., Ferscha, A., Mutlu, B., Brillinger, M., Diwold, K., Lindstaedt, S., Schreck, T., & Mayr-Dorn, C. (2019). Human/machine/roboter: technologies for cognitive processes. Elektrotechnik Und Informationstechnik, 136(7), 313–317. https://doi.org/10.1007/s00502-019-00740-5

Wögerer, C., Plasch, M., Tscheligi, M., & Lampl, S. E. (2019). Industrial assistance as an I4.0 topic—MMassist: assistance in production in the context of human–machine cooperation. Smart Innovation, Systems and Technologies, 155, 399–410. https://doi.org/10.1007/978-981-13-9271-9_33

Ikeda, M., Ebenhofer, G., Minichberger, J., Stübl, G., Pichler, A., Huber, A., & Weiss, A. (2018). User Experience in kollaborativen Roboteranwendungen. 1–12.

Ikeda, M., Maddukuri, S., Hofmann, M., Pichler, A., Zhang, X., Polydoros, A., Piater, J., Winkler, K., Brenner, K., Harton, I., & Neugebauer, U. (2018). FlexRoP – flexible, assistive robots for customized production (pp. 53–58). https://doi.org/10.15203/3187-22-1-11

Weichhart, G. (2018). Representing processes of human robot collaboration. CEUR Workshop Proceedings, 2074.

Weichhart, G., Åkerman, M., Akkaladevi, S. C., Plasch, M., Fast-Berglund, Å., & Pichler, A. (2018). Models for Interoperable Human Robot Collaboration. IFAC-PapersOnLine, 51(11), 36–41. https://doi.org/10.1016/j.ifacol.2018.08.231

Wögerer, C., Plasch, M., Tscheligi, M., Egger-Lampl, S., & Pichler, A. (2018). MMAssist_II: Assistance in production in the context of human – machine cooperation. 49–52. https://doi.org/10.15203/3187-22-1-10

Akkaladevi, S. C., Plasch, M., & Pichler, A. (2017). Skill-basiertes Lernen für Montageprozesse. Elektrotechnik Und Informationstechnik, 134(6), 312–315. https://doi.org/10.1007/s00502-017-0514-2

Ikeda, M., Ebenhofer, G., Minichberger, J., Fritz, G., Pichler, A., Huber, A., & Weiss, A. (2017). User-Centered Assistive Robotics for Production Human-Robot Interaction Concepts in the AssistMe project. 45–50. https://doi.org/10.3217/978-3-85125-524-9-09

Pichler, A., Akkaladevi, S. C., Ikeda, M., Hofmann, M., Plasch, M., Wögerer, C., & Fritz, G. (2017). Towards Shared Autonomy for Robotic Tasks in Manufacturing. Procedia Manufacturing, 11(June), 72–82. https://doi.org/10.1016/j.promfg.2017.07.139

Sharath Chandra, A., Plasch, M., Eitzinger, C., & Rinner, B. (2017). Context enhanced multi object tracker for human robot collaboration. ACM/IEEE International Conference on Human-Robot Interaction, 61–62. https://doi.org/10.1145/3029798.3038406

Akkaladevi, S. C., & Heindl, C. (2016). Action recognition for human robot interaction in industrial applications. 2015 IEEE International Conference on Computer Graphics, Vision and Information Security, CGVIS 2015, 94–99. https://doi.org/10.1109/CGVIS.2015.7449900

Chowdhary, M. S., & Rooker Martijn, et al. (2015). Towards Safe Human Robot Collaboration: Sonar Based Collision Avoidance for Robot’s End-Effector. Austrian Robotics Workshop 2015, 36–37.

Rooker, M., Maddukuri, S., Minichberger, J., Pichler, A., Feyrer, C., & Nöhmayer, H. (2015). Interactive Workspace Modelling for Assistive Robot Systems with the Aid of Ultrasonic Sensors. 43(July). https://doi.org/10.13140/RG.2.1.3056.8807

Barattini, P., Morand, C., Almajai, I., Robertson, N., Hopgood, J., Ferrara, P., Bonasso, M., Strassmair, C., Rottenbacher, M., Staehr, M., Neumann, R., Tornari, M., Rovetta, A., Plasch, M., Bauer, H., Capco, J., Woegerer, C., & Pichler, A. (2013). Towards tailor made robot co workers based on a plug&produce framework. Proceedings – 2013 IEEE International Symposium on Assembly and Manufacturing, ISAM 2013, 1–7. https://doi.org/10.1109/isam.2013.6643496

Wögerer, C., Rooker, M., Angerer, A., Blume, J., Bannatt, A., Ferrara, P., Kiirikki, J., & Pichler, A. (2013). A Robotic Assistance System for Flexible Packaging of Consumer Goods in Electronic Industry. Raad 2013, 1–8.

Plasch, M., Pichler, A., & Rooker, M. (2012). Simplified Programming of Modular Robotic Systems Based on Workflow Modeling. Austrian Robotics Workshop.

Plasch, M., Pichler, A., Rooker, M., & Ebenhofer, G. (2012). Ein modellbasierter Plug&Produce-Ansatz für Roboterassistenzsysteme in der Produktion. Internationales Forum Meachtronik.

Oppl, S., & Weichhart, G. (2005). Requirements for Collaborative Process Design. Workshop-Proceedings Der 5. Fachuebergreifenden Konferenz Mensch Und Computer 2005, 197, 15–22.

02_andreas_pichler_technischer_gf_web

Your Contact

Dr. Andreas Pichler
CTO

+43 72 52 885 306
andreas.pichler@nullprofactor.at

We answer…

… your questions